

Ulrich Näher, Wolfgang Neubert, Arno Antlitz

Product Development in the Automotive Industry: Strategies to Circumvent the Complexity Challenge

January 31, 2002

Time-to-market is reduced dramatically

MONTH FROM DESIGN FREEZE TO SOP*

In addition, urgency towards innovation drives vehicle complexity

Type of innovation in electronics Percent

Vehicle complexity – example BMW Z22

- BMW Z22 carries 70 major innovations and 61 patents
- Objective is to ensure new technology concepts for 2005 and beyond
- Approx. 70 80% of innovations are in the field of electronics:
 - X-by-wire
 - Car PC
 - Center monitor
 - Fingerprint
 - recognition
 - Head-up display

Integration challenge

– Curvelight– Speech control

alternator

– Cameras for rear view

- Integrated starter/

Telematics

Source: Automobil Entwicklung, survey results, McKinsey/ika

Clear and precise customer knowledge and orientation

Efficient product architecture – from identity to similarity

Value chain adaptation towards competence based structures

Stringent quality processes along entire development process

Clear and precise customer knowledge and orientation

Efficient product architecture – from identity to similarity

Value chain adaptation towards competence based structures

Improved development processes leveraging IT opportunities

Stringent quality processes along entire development process

McKinsey&Company

Efficient architectures have to be optimized on vehicle and component level

Existing product architectures are redesigned with highest share of identical parts possible while maintaining sufficient differentiation

Product architecture Parts/module architecture Identity **Function** 100% Identical 100% identical separation parts/modules parts Same variants **Function** across vehicle integration types Building block modules **Function** elimination Foot controls example Adapted Existing parts/ Variant parts/modules modules with combination adjustments Foot Foot Principle or Related functions controls for controls Restructuring concept or geometries vehicle for vehicle parts/modules ("pantograph") type A type B Combination Solitary Parts/modules reduction parts/modules specific to vehicle 0% types

Source: McKinsey

For deriving communality potentials four cost levers have to be understood

Source: McKinsey

Clear and precise customer knowledge and orientation

Efficient product architecture – from identity to similarity

Value chain adaptation towards competence based structures

Improved development processes leveraging IT opportunities

Stringent quality processes along entire development process

Price increases above the inflation rate cannot be enforced despite new technologies

Cost due to additional features have to be compensated by optimizing the value chain

PRODUCTION COSTS COMPACT CAR, NOT INFLATION-ADJUSTED EUR/unit

Source: HAWK project team

EXAMPLE: CHASSIS Functional value chain architecture will give way to one that is knowhow-driven

INDUSTRY STRUCTURE

Today

In the future

Specific competencies are required to capture new synergies

NEW SYNERGY POTENTIAL IN CHASSIS SEGMENT

EXAMPLE CHASSIS

EXAMPLE: CHASSIS

Detailed analysis of competency gaps helps to derive specific activities COST REDUCTION POTENTIAL FOR FUTURE STEERING SYSTEM INTEGRATOR Percent Sample company

Source: HAWK project team

customer

Clear and precise customer knowledge and orientation

Efficient product architecture – from identity to similarity

Value chain adaptation towards competence based structures

Improved development processes leveraging IT opportunities

Stringent quality processes along entire development process

The 2005 target requires a reduction of development times by 50% AVERAGE DEVELOPMENT TIMES, PROJECT DECISION TO SOP Month

AUTOMOTIVE EXAMPLE

Product testing must be optimized along different dimensions

Clear and precise customer knowledge and orientation

Efficient product architecture – from identity to similarity

Value chain adaptation towards competence based structures

Stringent quality processes along entire development process

* Profit contribution from profits or cost differences over life cycle, assuming: 500,000 units p.a., USD 5,000 profit contribution/vehicle, production time 7 years

** Over total production time

Source:McKinsey

Automotive software development adds a new layer of complexity compared to hardware

More complexity	 High number of tacit requirements Heavy software and hardware interaction for embedded systems Project complexity growing steeply with product size 	Fundamental differences:
Less trans- parency	 Intangible product, hard visualization and performance tracking General mismatch between scope and available resources - projects always seem to be "nearly" complete 	Find specific solution
Less discipline	 Inherent tendency to over-engineering Seemingly low cost of changes Invariant resource under-estimation Irrational developer preferences 	Will disappear as industry matures: Learn from hardware
More technolo- gical risk	 High degree of change in underlying complex technologies No widely accepted platform standards Immature tool landscape 	
More business risk	 Fast-moving (and in many cases immature) markets Customer value hard to assess Lack of experience translating customer requirements into functionality 	

Source: Brooks: The Mythical Man-Month, McKinsey

Operational improvement can be achieved in a three step approach

Development organization

- Restructuring of development organization for specific needs of SW projects is necessary
- Building of specific skills in SW development and SW project management is needed

Process efficiency

- Complex software projects are only feasible with standardized, repeatable processes
- Development effort depends heavily on process maturity - efficiency potentials of up to 90% are possible

Product architecture

- Modular, feature specific product design is key to reduce complexity and enable concurrent engineering
- **Platforming** and maximal degree of reuse is necessary to overcome complexity challenge and ensure software quality

Source: McKinsey

Clear and precise customer knowledge and orientation

Efficient product architecture – from identity to similarity

Value chain adaptation towards competence based structures

Stringent quality processes along entire development process

QUALITATIVELY

Significant issues after reorganizations CHANGES IN ORGANISATIONAL ORIENTATION

Project organizations must combine high integration and functional development capabilities EVALUATION OF DEVELOPMENT CAPABILITIES

Integration capabilities

- Development time
- Target costs
- Known customer requirements
- Platform concepts

Functional capabilities

- Commercialized innovations
- Quality of vehicle features
- Efficiency of function

Structure and roles within project organization defined to ensure high competency

Organizational setup of line functions based on individual function

The necessary change process must be driven by top management and requires a long term change in people's mindsets

1

Clear and precise customer knowledge and orientation

2

Efficient product architecture – from identity to similarity

3

Value chain adaptation towards competence based structures

Improved development processes leveraging IT opportunities

Stringent quality processes along entire development process

6

Project organization combining high functional and integration capabilities Characteristics of change process

- Top management topic
- Change management approach required
- •Long term process

Act now forward instead of reacting afterwards

Source: McKinsey